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ABSTRACT 

Fractured system are ubiquitous to oil, gas and geothermal reservoirs. The transport of mass, heat and momentum within a fractured 

system is highly dependent on the geometrical properties of the matrix. Current studies of flow and transport in fractures generally assume 

purely diffusive transport in the matrix. Yet, this assumption is invalid for fractures embedded in hyperporous matrices that can be highly 

permeable to flow. In this work we provide an overview of the recent models developed for flow and transport in fractured media, as well 

as their numerical validation. Specifically, we focus on idealized single fracture systems embedded in hyperporous matrices, and on the 

impact that matrix topology, as characterized by its permeability, has on fracture transmissivity and solute dispersion.  

1. INTRODUCTION 

Systems with fractures embedded in a porous matrix are common to a variety of engineering processes. Some examples include heat 

transfer in geothermal reservoirs (Bodvarsson and Tsang 1982, Bommer, et al. 2006, Pruess and Narasimhan 1982) and contaminant 

transport in fractured rocks, just to mention a few. While the study of heat/mass transport in fractured system has generally focused on 

fractures embedded in nearly impermeable matrices, many experimental studies have pointed out that dissolution reactions may 

significantly alter the matrix integrity by inducing cement preferential dissolution, and, as a result, significantly alter the transport 

properties of the system at a larger scale. One example is represented by calcite cement dissolution during acidic water injection (Noiriel, 

Made and Gouze 2007, Mangane, Gouze and Luquot 2013). Similarly, in geothermal systems the interaction between unequilibrated 

waters and fracture minerals can also lead to dissolution and precipitation reactions that may affect long-term reservoir permeability. 

Among other effects, dissolution processes may lead to cement removal, which ultimately affects the permeability of the matrix in which 

fractures are embedded (Lammers, Smith and Carroll 2017). Matrix alteration affects heat, mass and momentum transport to the fracture.  

From a theoretical standpoint, the difficulty of studying solute/heat transport in coupled fracture-matrix systems lies in the dynamic 

coupling between the two regions (the fracture and the matrix) and in the need to incorporate different geometrical properties of the matrix 

into solute transport models at the macroscale. Generally, fractured systems are modelled as two overlapping continua, high permeability 

fractures and low permeability matrices. These models are generally referred to as dual-porosity models, since the mass/heat exchange 

between the fracture and the matrix is described by a source term that couples the governing equations for the fracture and to those for the 

matrix.  Upscaling (e.g. by homogenization method, stochastic homogenization, volume averaging) has been one of the techniques 

routinely used to derive 1D macroscopic models for single fractures. Equations for the average concentration in the fracture 〈𝑐𝑓〉 (and the 

matrix 〈𝑐𝑚〉 ) are derived under the assumption of a thin  fracture together with the effective dispersion coefficient in the fracture in terms 

of effective matrix properties (generally porosity only). Single fracture models are then used as a basis to generalize mass and heat 

transport equations to fracture systems. Yet, most one-dimensional thin fracture models (Tang, Frind and Sudicky 1981, Dejam, 

Hassanzadeh and Chen 2014, Bodvarsson and Tsang 1982), as well as two-dimensional dispersion models (Roubinet, Dreuzy and 

Tartakovsky 2012), assume purely diffusive transport in the matrix (Figure 1, top left), and routinely neglect permeability of and dispersive 

transport in the matrix (Figure 1, bottom left). Only recently, attempts to account for matrix permeability have been undertaken (Griffiths, 

Howell and Shipley 2013, Ling, Tartakovsky and Battiato 2016). Ling and et al. utilize perturbation theory and upscaling techniques to 

obtain the fracture dispersion coefficient in terms of matrix porosity and permeability  (Ling, Tartakovsky and Battiato 2016). 

Notwithstanding the variety of proposed models, there is no experimental evidence of their validity. While experiments on real fractured 

porous media can be conducted, there is little control on porous matrix topology and identification of a relationship between pore-scale 

matrix structure and fracture dispersion becomes challenging. In this work, we use direct 3D numerical simulations on virtual microfluidic 

chips to validate two macroscale models developed for transport in a fracture embedded in an impervious (see Figure 1 - left) or a 

permeable matrix (see Figure 1 - right), respectively. 
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Figure 1: (Left) Fracture coupled with different types of porous matrices. (Right) Effective representation of the domain of 

interests. 

In this paper, we first provide a brief overview of the current macroscale modeling approaches used to analyze passive solute transport in 

thin porous fractures embedded either in impermeable or permeable matrices. We then use fully resolved pore-scale 3D computational 

dynamics simulations to investigate the validity of various upscaling approximations. Specifically, we compare 3D pore-scale simulations 

in synthetically generated micromodels patterned by transverse riblets and arrays of cylinders with two macroscopic transport models 

developed by Dejam et al. (Dejam, Hassanzadeh and Chen 2014) and Ling et al. (Ling, Tartakovsky and Battiato 2016)  that account for 

either purely diffusive or dispersive transport in the matrix, respectively.  We refer to the model by Dejam, Hassanzadeh, & Chen as 

‘Diffusive-matrix model’ and that by Ling, Tartakovsky, & Battiato as ‘Dispersive-matrix model’. 

The paper is organized as follows. In section 2, we present three different models (pore-scale model, diffusive-matrix model and 

dispersive-matrix model), and the impact that matrix permeability has on fracture transmissivity and dispersion. In section 3, we compare 

fully 3D simulations of transport in synthetically generated micromodels with the two upscaled models. We conclude with a summary of 

our work in Section 4. 

 

2. NUMERICAL AND ANALYTICAL MODELS: TRASMISSIVITY AND DISPERSION 

In this study, we consider transport in three synthetically generated 3D micromodels, M1, M2 and M3 shown in Figure 2. We will compare 

breakthrough curves calculated from three different upscaled models. The models include: (1) a pore-scale three-dimensional numerical 

model (denoted as 3D Model); 2) the upscaled diffusive-matrix model developed by Dejam et al. (Dejam, Hassanzadeh and Chen 2014); 

and 3) the upscaled dispersive-matrix model  (Ling, Tartakovsky and Battiato 2016). 
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Figure 2: Top view of the synthetically generated 3D micromodels of depth 𝑯𝒛 = 𝟖𝟎 𝝁𝐦 and length 𝑳 = 𝟏𝟓 𝐦𝐦 where a fracture 

of constant aperture 𝟐𝒃 = 𝟎. 𝟓 𝐦𝐦 is embedded in three types of matrices, two permeable matrices M1 and M2 constituted of 

arrays of monodisperse cylinders, and one impervious  matrix M3 formed by arrays of riblets transverse to flow. 

2.1 Pore-scale model 

Flow and passive transport at the pore-scale is governed by the Navier-Stokes, continuity and Advection-Diffusion equations, 

𝜕𝑢

𝜕𝑡
+ (�̃� ∙ ∇)�̃� +

1

𝜌
∇𝑃 = ∇ ∙ (𝜈∇�̃�),          ( 1 ) 

∇ ∙ �̃� = 0,            ( 2 ) 

𝜕𝑐

𝜕𝑡
+ �̃� ∙ ∇𝑐 − 𝐷0∇2𝑐 = 0,           ( 3 ) 

where �̃� = [𝑢, 𝑣, 𝑤] is the velocity vector field, 𝑃 is the pressure, 𝜌 and 𝜈 the density and kinematic viscosity of the fluid, respectively. 

Since we consider aqueous dilute solutions, the density and viscosity are set to those of water, 𝜌 = 1000 kg/m3 and 𝜈 = 1 × 10−6 m2/s. 

The physical boundaries of the simulation domain are shown in Figure 2 (top), where we only model half of the entire chip (a symmetry 

boundary condition is imposed along the channel axis, Γ𝑐). The inlet and outlet boundaries are denoted as Γ𝑖 and Γ𝑜, while  Γ𝑤 denotes all 

the impermeable walls, i.e. obstacles, top/bottom surfaces and any other solid surface of the synthetically generated chip. Constant inlet 

flow rate is imposed on Γ𝑖, i.e. 

�̃� = [𝑈, 0,0],     𝑛 ∙ ∇𝑃 = 0     for      �̃� ∈ Γ𝑖 ,         ( 4 ) 

𝑛 ∙ ∇�̃� = 0,     𝑃 = 𝑃𝑜𝑢𝑡     for      �̃� ∈ Γ𝑜,           ( 5 ) 

�̃� = 0,      𝑛 ∙ ∇𝑃 = 0     for      �̃� ∈ Γ𝑤 ,            ( 6 ) 
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𝑛 ∙ ∇�̃� = 0,      𝑛 ∙ ∇𝑃 = 0     for      �̃� ∈ Γ𝑐 .          ( 7 )
  

2.2 Diffusive-matrix Model  

Under the hypothesis that the discrete obstacles can be treated as a porous-continuum impermeable to flow, where  mass transport is 

entirely controlled by diffusion from the channel into the matrix, Dejam et al. (Dejam, Hassanzadeh and Chen 2014) upscaled Equations 

(1) - (3) and derived an equation for the average concentration in the channel and the matrix, 〈𝑐𝑓〉 and 〈𝑐𝑚〉, 

𝜀𝑃𝑒
𝜕〈𝑐𝑓〉

𝜕𝑡
+ 𝜀𝑃𝑒

7

5
𝑉𝑚

𝜕〈𝑐𝑓〉

𝜕𝑥
= 𝜀2𝐷𝑑

∗ 𝜕2〈𝑐𝑓〉

𝜕𝑥2
− 3(〈𝑐𝑓〉 − 〈𝑐𝑚〉),          ( 8 ) 

𝜀𝑃𝑒
𝜕〈𝑐𝑚〉

𝜕𝑡
= 𝐷𝑚

𝜕2〈𝑐𝑚〉

𝜕𝑦2
,             ( 9 ) 

where  𝜀 = 𝑏/𝐿, 𝑃𝑒 = 𝑏𝑈/𝐷0 is the Peclet number, 𝑉𝑚 is the dimensionless average velocity, 𝐷𝑚 is the effective molecular diffusion 

coefficient in the matrix normalized by the molecular diffusion coefficient 𝐷0 , 𝑡 = �̃�/(𝐿/𝑉), 𝑥 = �̃�/𝐿 and 𝑦 = �̃�/𝑏. The dispersion 

coefficient in the fracture is given by 

𝐷𝑑
∗ = 1 +

1

175
𝑃𝑒2.             ( 10 ) 

2.2 Dispersive-matrix Model 

Unlike the diffusive-matrix model developed by Dejam et al. (Dejam, Hassanzadeh and Chen 2014), Ling et al. by (Ling, Tartakovsky 

and Battiato 2016) upscaled the pore-scale equations (1) - (3) while explicitly accounting for a permeable matrix with porosity 𝜙 and 

permeability 𝑘. For low Reynolds numbers, the upscaled flow field satisfies the Stokes equation in the fracture coupled to a Darcy-

Brinkman equation in the matrix. For fully developed steady flow conditions, the velocity field admits an analytical solution in the form 

(Battiato 2012) 

𝑢𝑓(𝑦) = −
𝛹

2
(𝑦2 + 𝐴𝑦 + 𝐵),            ( 11 ) 

𝑢𝑚(𝑦) = −
𝛹

𝜆2 (1 + 𝐸𝑒𝜆𝑦 + 𝐹𝑒−𝜆𝑦),            ( 12 ) 

where: 

𝛹 =
𝑏2

𝜇𝑈
∇𝑃,              ( 13 ) 

is the dimensionless pressure gradient (with 𝜇 the dynamic viscosity and ∇𝑃 the dimensional pressure drop) and 

λ =
𝑏

√𝑘
,               ( 14 ) 

is the dimensionless inverse permeability, i.e. the square root of the inverse Darcy number. Another important length scale is the 

dimensionless height of the matrix, which partly controls the dynamical response of the system at the macroscale (Battiato 2012), defined 

as 

Λ =
𝐻

√𝑘
.               ( 15 ) 

A matrix is defined ‘thick’ when Λ > 1 and ‘thin’ when Λ < 1 (Battiato 2012). The integration constants 𝐴, 𝐵, 𝐶 and 𝐹 are defined by 

𝐴 = 2,               ( 16 ) 

𝐵 = 2λ−2(−1 + 𝑒λℎ)(−1 + 𝑒λℎ + λ + λ𝑒λℎ)(1 + 𝑒2λℎ)
−1

,         ( 17 ) 

𝐸 = 𝑒λℎ(−1 + 𝑒λℎ)(1 + 𝑒2λℎ)
−1

,            ( 18 ) 

𝐹 = (λ + 𝑒λℎ)(1 + 𝑒2λℎ)
−1

.           ( 19 ) 
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Once the mean velocity profile is analytically determined in terms of  λ (i.e. matrix permeability), its impact on trasmissivity can be 

immediately quantified. Fracture transmissivity is defined as 

𝑇𝑓 =
𝑄𝑏

𝐴∇𝑃
             ( 20 ) 

where 

𝑄 = ∫ 𝑢𝑓𝑑𝑦
𝑏

0
,       and      𝐴 = 2𝑏𝐻𝑧.           ( 21 ) 

In Figure 3, we plot fracture transmissivity in terms of normalized permeability (𝑘/𝑏2) and different values of the dimensionless height 

of the matrix h. The Figure demonstrates that the impact of matrix permeability on fracture trasmissivity may be significant, leading to 

two order-of-magnitude increase for thick and highly permeable matrices. Specifically, the two shades of  grey indicate different regimes 

of Λ (thick or thin matrix). Figure 3 shows that (i) a permeable matrix increases transmissivity of the fracture;  (ii) when the matrix is 

categorized as thick matrix, the influence of the matrix geometry on the transmissivity increases; (iii) when the permeability goes to 

infinity, the transmissivity reaches a plateau, which corresponds to a fracture with wider aperture. 

 

 

Figure 3: Transmissivity ( 𝑻 ) as a function of normalized permeability (𝒌/𝒃𝟐) for different 𝒉 and 𝚲. 

Once the mean velocity field is known, homogenization can be further utilized to obtain a macroscopic 1D model for transport. The 

dispersive-matrix model describes the spatio-temporal evolution of the average pore-scale concentration in the channel and the matrix, 
〈𝑐𝑓〉 and 〈𝑐𝑚〉, up to errors of order 𝜀,  

𝑃𝑒
𝜕〈𝑐𝑓〉

𝜕𝑡
+ 𝑃𝑒〈𝑢𝑓〉

𝜕〈𝑐𝑓〉

𝜕𝑥
= 𝜀𝐷𝑓

∗ 𝜕2〈𝑐𝑓〉

𝜕𝑥2 + 𝜙𝑃𝑒〈𝑢𝑚〉
𝜕〈𝑐𝑚〉

𝜕𝑥
−

3∅𝐷𝑚𝑦

𝜀2ℎ
(〈𝑐𝑓〉 − 〈𝑐𝑚〉),        ( 22 ) 

𝑃𝑒
𝜕〈𝑐𝑚〉

𝜕𝑡
+ 𝑃𝑒〈𝑢𝑚〉

𝜕〈𝑐𝑚〉

𝜕𝑥
= 𝜀𝐷𝑚

∗ 𝜕2〈𝑐𝑚〉

𝜕𝑥2 +
𝑃𝑒

∅ℎ
〈𝑢𝑓〉

𝜕〈𝑐𝑓〉

𝜕𝑥
+

3𝐷𝑓

𝜀2∅ℎ
(〈𝑐𝑓〉 − 〈𝑐𝑚〉),        ( 23 ) 

where 𝐷𝑓 is the dimensionless effective molecular diffusion coefficient in the channel and 𝐷𝑚𝑦 is the dimensionless effective molecular 

diffusion coefficient in the matrix in the y-direction. Here, we set 𝐷𝑓 = 𝐷𝑚𝑦 = 1, i.e. the effective diffusion coefficients in the fracture 

and matrix are  equal to  molecular diffusion. 

The velocities 〈𝑢𝑓〉 and 〈𝑢𝑚〉   in the channel and matrix are the vertically averaged velocity profiles (11) and (12). The dispersion 

coefficients 𝐷𝑓
∗ and 𝐷𝑚

∗ , that explicitly depend on λ (i.e. on the matrix permeability 𝑘), are given by 
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𝐷𝑖
∗ = 1 + 𝑃𝑒2𝐼𝑖(𝜆, ℎ, 𝛹),             ( 24 ) 

where  

𝐼𝑖 = 〈𝑢𝑖 ∬ 𝑢𝑖
′(𝑦) 𝑑𝑦𝑑𝑦

𝑦

0
〉,       and      𝑢𝑖

′(𝑦) = 𝑢𝑖 − 〈𝑢𝑖〉,       𝑖 = {𝑓, 𝑚}      ( 25 ) 

For the fracture, direct integration gives 

𝐼𝑓 =
𝛹2

105
{1 +

7

3

(−1+𝑒λℎ)[−1+𝑒λℎ+λ(1+𝑒λℎ)]

λ2(1+𝑒2λℎ)
}.         ( 26 ) 

Further, to compare newly derived dispersion coefficient with Taylor-Aris dispersion (Taylor 1953) and diffusive model, we define 

normalized dispersion coefficients as: 

𝜅𝑖 =
𝐷𝑖

∗

𝐷𝑇𝑎𝑦𝑙𝑜𝑟−𝐴𝑟𝑖𝑠
∗ =

𝐷𝑖
∗

1+
2

105
𝑃𝑒2

,       𝑖 = {𝑓, 𝑑}.         ( 27 ) 

In Figure 4, we plot the normalized dispersion coefficient (Taylor 1953). For small Peclet number, 𝜅𝑓 → 𝜅𝑑, i.e., the dispersion coefficient 

for the coupled system with permeable matrix (finite λ)  converges to its non-permeable matrix limit independent of ℎ and λ.  When 𝑃𝑒 <
1, advective mixing both in the matrix  and  channel is negligible relative to  diffusive mixing. As a result, 𝜅𝑓 → 𝜅𝑑 and 𝜅𝑑 → 1. In the 

intermediate range of Peclet numbers (1 < 𝑃𝑒 < 𝑃𝑒∗), 𝜅𝑓 changes from  𝜅𝑓 = 1, to  𝜅𝑓 → 𝜅𝑓(ℎ, λ). When 𝑃𝑒 > 𝑃𝑒∗. It is worth noticing 

that the dispersion coefficient can overcome its purely diffusive limit when λ < 1, i.e. mixing is enhanced compared to a channel of half 

width 𝑏. As mentioned above, for large Peclet number, 𝜅𝑓 reaches a 𝑃𝑒-independent asymptotic value 𝜅𝑓(ℎ, λ). In this regime, for any 

given 𝑃𝑒, the dispersion coefficient increases with  decreasing λ. This phenomenon is attributed to a decreasing mass flux at the interface 

between the channel and the matrix, and a resulting decreasing mass loss toward the matrix. Such mass loss is smaller compared with the 

zero-permeability case, where no solute is transported from the upper steam by the flow in the matrix. This is a newly identified mechanism 

regulating mass exchange between the channel and the matrix, which is purely controlled by the matrix properties (λ and ℎ) at fixed 

operating conditions (i.e., constant 𝑃𝑒 number). This mechanism is different from the mass transfer mechanism first proposed by Wu and 

et al. (Wu, Ye and Sudicky 2010) and then quantified by Dejam and et al. (Dejam, Hassanzadeh and Chen 2014) where the channel-matrix 

interface flux increases (and dimensionless dispersion coefficient 𝜅𝑑 decreases) with increasing Peclet number and is independent of 

matrix properties λ and ℎ. In the zero permeability limit, i.e., λ → ∞, and for fixed 𝑃𝑒, 𝜅𝑓 → 𝜅𝑑, as expected.  

 

Figure 4: Normalized dispersion coefficients 𝛋𝐟 (solid red lines) and 𝛋𝐝 (dashed back line) versus 𝐏𝐞 for different values of 𝛌 and 

𝚲 . The figure is adapted from Ling and et al.’s work (Ling, Tartakovsky and Battiato 2016). 

In the following Section we compare the pore-scale 3D simulations performed on the virtual microchips M1, M2 and M3 as well as the 

results from the diffusive-matrix and dispersive models. 
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3. RESULTS AND DISCUSSION 

In Figure 5, we plot the breakthrough curves calculated from 3D simulations (solid red lines), and predicted by the diffusive- (dashed 

black lines) and dispersive-matrix (solid blue lines) models. In the diffusive-matrix model we treat 𝑉𝑚 and 𝐷𝑚 as a fitting parameters in 

equation (8) and (9), respectively. In the dispersive-matrix model (equation (22) and (23)) we use 𝛹 and λ as fitting parameters, instead. 

The fitting parameters are determined by a least-square algorithm. All fitting results are presented in Figure 5 for different matrix 

topologies. 

 

 

Figure 5: Comparison of breakthrough curves from 3D simulations (solid red lines), diffusive model (black dashed lines) and 

dispersive model (solid blue lines). The physical time is rescaled and normalized: 𝒕𝟎 represents the time when 𝒄 = 𝟎. 𝟏 and 𝑻𝒂𝒅𝒗 =
𝑳/𝑼. 

Figure 5 shows normalized concentration measured at a fixed cross-section along the channel as a function of normalized time. For highly 

permeable matrix (M1 and M2), the diffusive model (blue solid line) underestimates the breakthrough and presents a long tailing-effect, 

while the dispersive model captures the pore-scale results and shows a good agreement for different Peclet regimes. On the other hand, 

the diffusive model captures the breakthrough behavior for impermeable case (M3). This comparison indicates that when the fracture is 

coupled with a hyper-porous matrix, the breakthrough curve does not exhibit a long tail unlike the diffusive-matrix case. This analysis 

suggests that matrix permeability has a large impact on macroscopic transport dynamics and that diffusive-matrix models could lead to 

significant errors predictions, if used to model transport in fractures embedded in hyper-porous media.   

4. CONCLUSION 

Understanding flow and transport within fractures is essential to a number of natural and industrial processes, including geothermal 

applications, oil production, etc. Effective models, which are utilized as a substitute of full pore-scale models, generally assume purely 

diffusive transport in the matrix. However, heterogeneous reactions due to unequilibrated waters may trigger preferential cement 

dissolution in the matrix embedding the fractures. In this work, we focus on the impact that highly permeable matrices may have on flow 

and transport in adjacent fractures. We start by reviewing two recently developed upscaled models of passive transport in fractures 

embedded in impervious and hyperporous matrices.  We compare numerical three-dimensional pore-scale simulations of transport in 

virtual microfluidic chips with the diffusive- and dispersive-matrix models developed by Dejam et al. (Dejam, Hassanzadeh and Chen 

2014), Ling et al. by (Ling, Tartakovsky and Battiato 2016), respectively. The diffusive-matrix model is routinely applied to predict the 

breakthrough curves in fracture-matrix. Our simulations conducted on 3D synthetic domains patterned with arrays of cylinders (i.e. 

hyperporous matrix) and riblets transverse to flow (i.e. impervious matrix) demonstrate that the impact of matrix permeability on 

macroscale transport cannot be neglected.  
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Current research includes the design of a set of microfluidic laboratory experiments (i) to validate the 3D numerical code, (ii) to test the 

model predictivity under different dynamical input and geometries; and (iii) to test the hypothesis that few layer of obstacles can be treated 

as a porous continuum. 
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